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Abstract

A numerical algorithm for kinetic modelling of droplet evaporation processes is suggested. This algorithm is focused on
the direct numerical solution of the Boltzmann equations for two gas components: vapour and air. The physical and veloc-
ity spaces are discretised, and the Boltzmann equations are presented in discretised forms. The solution of these discretised
equations is performed in two steps. Firstly, molecular displacements are calculated ignoring the effects of collisions. Sec-
ondly, the collisional relaxation is calculated under the assumption of spatial homogeneity. The conventional approach to
calculating collisional integrals is replaced by the integration based on random cubature formulae. The distribution of
molecular velocities after collisions is found based on the assumption that the total impulse and energy of colliding mol-
ecules are conserved. The directions of molecular impulses after the collisions are random, but the values of these impulses
belong to an a priori chosen set. A new method of finding the matching condition for vapour mass fluxes at the outer
boundary of the Knudsen layer of evaporating droplets and at the inner boundary of the hydrodynamic region is sug-
gested. The numerical algorithm is applied to the analysis of three problems: the relaxation of an initially non-equilibrium
distribution function towards the Maxwellian one, the analysis of the mixture of vapour and inert gas confined between
two infinite plates and the evaporation of a diesel fuel droplet into a high pressure air. The solution of the second problem
showed an agreement between the results predicted by the widely used Bird’s algorithm and the algorithm described in this
paper. In the third problem the difference of masses and radii of vapour and air molecules is taken into account. The
kinetic effects predicted by the numerical algorithm turned out to be noticeable if the contribution of air in the Knudsen
layer is taken into account.
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1. Introduction

The importance of accurate kinetic modelling of the gas (non-ionised or ionised) dynamics in physics, engi-
neering and environmental applications is widely recognised [1–7]. This analysis is simplified in the case when
the characteristic scales of the problem are much larger or much smaller than the mean free path of molecules.
In the first case the kinetic Boltzmann equation is reduced to well known hydrodynamic equations, while in
the second case the analysis of this equation is greatly simplified due to the fact that collision processes can be
ignored. Notwithstanding these two limiting cases, the kinetic analysis of gas dynamics needs to be based on
the solution of the Boltzmann equation, taking into account the collision processes. Note that the Boltzmann
equation itself is an approximation of the more general chain of Bogolubov–Born–Green–Kirkwood–Yvon
(BBGKY) chain of equations [5].

A number of approximate methods of the solution of the Boltzmann equation have been suggested.
One of these methods is based on the replacement of this equation by the system of equations for the
moments of the distribution function [2]. Although this method is important from the point of view of
theoretical developments, its practical applications to non-stationary and multi-dimensional problems
are limited. An alternative approximate method is widely known as the method of the model kinetic
equations. In this method, the actual collision integral is not calculated but modelled. One of the most
widely used variations of this method was suggested in [8] and is known as Bhatnagar–Gross–Krook
(BGK) method (cf. [9,10]). More advanced versions of the method of the model kinetic equations were
suggested by Shakhov and described in [11]. These methods are computationally economical but their
accuracy becomes poor when the distribution of gas molecules (ions/electrons) deviates considerably
from the equilibrium distribution. A more detailed analysis of these approximate methods and the
results of their applications are reviewed in a number of monographs and papers including [12–14].
Although these solutions have proven to be useful in qualitative analysis of phenomena and
understanding of the underlying physics, their limitations for the quantitative analysis are well
known.

It seems that the only way to perform the quantitative analysis of gas dynamics in the general case can be
based on direct numerical methods. For non-ionised gases such methods were developed by Bird [15,16] and
Aristov and Tcheremissine [17]. Bird based his approach on direct statistical analyses of the dynamics of
individual atoms while Aristov and Tcheremissine developed a new method of the direct numerical solution
of the Boltzmann equation. These methods were further developed and applied to the analysis of gas
dynamics, including evaporation and condensation problems in numerous papers including [17–29].
Attempts to apply these methods to binary mixtures were reported in [23–28]. Numerical difficulties in
the analysis of these mixtures, however, led to imposing a number of restrictions on the properties of mol-
ecules. Molecules considered in [23,25,26] were assumed to be mechanically identical. In [24,27] the differ-
ence in the masses of molecules was taken into account but their diameters were assumed to be the same.
These assumptions can hardly be justified in many practical engineering applications, where molecules in
binary mixtures have very different diameters (cf. the problem of evaporation of heavy hydrocarbons into
air). No attempts to solve the Boltzmann equations for a mixture of more than 2 gases have been reported
to the best of our knowledge.

The main aim of this paper is to present a numerical algorithm for the solution of the Boltzmann
equations which was originally suggested in [17] and applied to the solution of Boltzmann equations
for 2 gases in [28,30]. Some new features of this algorithm, including those referring to the calculation
of the collision integral for binary mixtures, will be discussed. This algorithm is applied to simulate
the dynamics of binary mixtures without making an assumption that masses or sizes of all molecules
are identical. The physical background and mathematical formulation of the problem are presented
and discussed in Section 2. The numerical algorithm for the solution of the basic equations is described
in Section 3. In Section 4 the properties of the Knudsen layer around evaporating droplets and the
matching of the kinetic solution in this layer with the hydrodynamic solution in the ambient gas are
investigated. The results of testing and application of the model and numerical algorithm to several engi-
neering problems are presented and discussed in Section 5. The main results of the paper are summarised
in Section 6.
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2. Basic equations and approximations

For the analysis of molecular dynamics we assume that gas molecules are colliding elastic spheres charac-
terised by the distribution function f(r, t,v) : f(r, t,v)dr dv is the expected number of molecules located between
r and r + dr in the physical space and between v and v + dv in the velocity space at the moment of time t. The
assumption about elastic spheres will be relaxed when the details of the collision processes are studied. We
assume that two types of molecules are present in the system characterised by two distribution functions
fa(r, t,v) and fb(r, t,v). Each of these functions depends on 7 variables (3 components of r (x,y,z), 3 components
of v (vx,vy,vz) and t) in the general case.

The evolution of fa and fb is controlled by the corresponding Boltzmann equations:
ofa

ot þ va
ofa

or
¼ J aa þ J ab

ofb

ot þ vb
ofb

or
¼ J ba þ J bb

)
; ð1Þ
where Jab (a = a,b; b = a,b) are collision integrals defined as
Jab ¼
r2

ab

2

Z þ1

�1
dv1

Z p

0

sin hdh
Z 2p

0

d/ f 0af 0b1 � fafb1

� �
jva � vb1j; ð2Þ
rab = (ra + rb)/2, ra and rb are the corresponding diameters of molecules, h and / are angular coordinates of
molecules b relative to molecules a, superscript 0 indicates the velocities and the distribution functions after
collisions, subscript 1 indicates that the function fa is modified under the influence of collisions with molecules
of the type b. The first integral in the right hand side of (2) is calculated in the three dimensional velocity space.
When deriving (1), it was assumed that body forces acting on molecules are negligible.

In order to calculate the integrals in (2), one needs to know the distribution functions f 0a and f 0b1 after col-
lisions. To do this, it is necessary to establish the relation between va, vb1 on one side and v0a, v0b1 on the other
side. The analysis of the collision processes is based on the assumption that collisions are elastic. In this case
the laws of conservation of impulse and energy lead to the following system of equations for v0a and v0b1 [31]:
v0a ¼
mb

maþmb
v0a � v0b1

��� ���n0 þ mavaþmbvb1

maþmb

v0b1 ¼ � ma
maþmb

v0a � v0b1

��� ���n0 þ mavaþmbvb1

maþmb

9>=
>;; ð3Þ
where ma and mb are the masses of molecules, n0 is the unit vector in the direction of molecular velocity after
the collision in the frame of reference linked with the centre of inertia of colliding molecules.

In order to specify the value of n0, we would need to model the collision process itself for given relative
velocities of molecules and their shapes. This is expected to be a very complicated task and the approximation
of molecules by elastic spheres is likely to become questionable. Slight changes of the shape of molecules and
their relative velocities before the collision process are likely to lead to substantial changes of the directions of
their velocities after collisions. In this case, it seems logical to assume that n0 is a random parameter. The
details of the numerical implementation of this model are discussed in Section 3. Equations for two molecular
species are solved subject to boundary and initial conditions, determined for a specific problem (evaporation,
condensation, heat transfer etc.) (see Section 4).

Once the values of the distribution function in various points in the physical space and at a certain moment
of time are found, we can calculate the moments of these function. These are the examples of these moments
which are most important from the point of view of applications:
na ¼
Z

fa dv
(number density of gas a);
qa ¼ ma

Z
fa dv
(mass density of gas a, ma is the mass of individual molecules);
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uia ¼
1

na

Z
vifa dv
(ith component of the average velocity of molecules in gas a);
jia ¼ ma

Z
vifa dv
(mass flux of gas a in the direction i);
P ija ¼
ma

2

Z
ðvj � ujÞðvi � uiÞfadv
(components of the stress tensor of gas a);
T a ¼
ma

3nakB

Z
ðv� uÞ2fadv
(temperature of gas a; kB is the Boltzmann constant);
qia ¼
ma

2

Z
ðv� uÞ2ðvi � uiÞfadv
(heat flux of gas a in the direction i). Indices i and j refer to x, y and z.
The importance of these moments is based on the fact that they represent physically measurable parame-

ters. Some of them (mass density and mass flux) will be extensively used in the following analysis.
3. Numerical algorithm

Our numerical algorithm is based on the method of direct numerical solution of the Boltzmann equation,
described in [17,30]. It includes the following steps. Physical and velocity spaces are discretised along with
time. Time and physical space are discretised as in conventional structured computational fluid dynamics
(CFD) codes. The discretisation of the velocity space is performed similarly to the physical space via replacing
continuous values of v by a discrete set {vk}M, where k indicates the position of a velocity cell, M is the total
number of cells. The boundaries of the velocity domain in vx,vy,vz directions are chosen in such a way that the
contribution of molecules with velocities outside this range can be ignored. In most practical implementations
of the algorithm, the difference between minimal and maximal values of the velocities was taken equal to 5 or 6
average thermal speeds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2RaT a

p
. Due to the difference in Ra for different gas components, the ranges of veloc-

ities for these components are also different.
For each value of vk

a, the corresponding value of f k
a is specified. This allows us to present Eq. (1) for each gas

component in a discretised form:
Df 1
a

Dt þ v1
a

Df 1
a

Dr
¼ J 1

aa þ J 1
ab

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Df k

a
Dt þ vk

a
Df k

a
Dr
¼ J k

aa þ J k
ab

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Df M

a
Dt þ vM

a
Df M

a
Dr
¼ J M

aa þ J M
ab

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

M

. ð4Þ
The boundary and initial conditions for the distribution functions are taken into account.
After calculation of J k

ab for each cell vk
a, the non-linear system of integral-differential equation (1) reduces to

the linear system of algebraic Eq. (4), presented for both gas components. Following [17], the numerical solu-
tion of System (4) is performed in two steps. Firstly, molecular displacements are calculated ignoring the effect
of collisions (J k

aa ¼ J k
ab ¼ 0). Secondly, the collisional relaxation is calculated under the assumption of spatial

homogeneity.
The numerical solution of Eq. (4) at the first step is performed following the explicit approach. The validity

of the Courant condition:
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Dt maxðjvxj; jvy j; jvzjÞ < minðDx;Dy;DzÞ ð5Þ

is assumed. Condition (5) guarantees that even the fastest molecules cannot cross more than one cell boundary
in any of the directions x, y or z. Although explicit schemes are criticised for the lack of stability and relatively
low accuracy in CFD applications, they proved to be acceptable for the solution of the Boltzmann equation.
They are conservative, easy to implement and their physical meaning is rather clear. Due to the absence of
collisions, the dynamics of each gas component is not influenced by another component.

At the next step, the displacement of molecules stops and they start colliding. Again using the explicit
approach, each equation in System (4) can be written as:
f k;n
a � ~f k;n�1

a

Dt
¼ J k;n�1

aa þ J k;n�1
ab ; ð6Þ
where ~ indicates the value of the distribution function calculated at the first step, additional superscripts n�1

and n indicate consecutive time steps. Eq. (6) are to be solved in each cell in the physical space.
For numerical solution of Eq. (1), Jab were rewritten as:
Jab ¼ �mabfa þ N ab; ð7Þ

where
mab ¼
r2

ab

2

Rþ1
�1 dv1

R p
0 sin hdh

R 2p
0 d/fb1 va � vb1

�� ��
N ab ¼

r2
ab

2

Rþ1
�1 dv1

R p
0 sin hdh

R 2p
0 d/f 0af 0b1 va � vb1

�� ��
9=
;. ð8Þ
The distribution functions in the integrands are hereafter taken after the first step (the ~ symbols are omitted).
Using the implicit approach the discretised version of Eq. (7) is presented as:
J k;n�1
ab ¼ �mk;n�1

ab f k;n
a þ Nk;n�1

ab ; ð9Þ
where
mk;n�1
ab ¼ r2

ab

2

Rþ1
�1 dv1

R p
0 sin hdh

R 2p
0 d/f k;n�1

b1 vk
a � vk

b1

��� ���
N k;n�1

ab ¼ r2
ab

2

Rþ1
�1 dv1

R p
0 sin hdh

R 2p
0 d/f 0k;n�1

a f 0k;n�1
b1 vk

a � vk
b1

��� ���
9>=
>;. ð10Þ
Remembering (9) the solution of Eq. (6) is presented as
f k;n
a ¼

~f k;n�1
a þ Dt N k;n�1

aa þ Nk;n�1
ab

h i
1þ Dt mk;n�1

aa þ mk;n�1
ab

h i . ð11Þ
The calculation of integrals mk;n�1
ab and Nk;n�1

ab in Eq. (9) (see Eq. (10)) turns out to be a major challenge from the
point of view of CPU requirements. It is known that the conventional approach to calculation of these
integrals leads to a relative error d of the order of K�1/s, where K is the number of cells used in numerical inte-
gration, s is the dimension of the integral [32]. This means that in order to perform the integration with the
error less than 1% in a 5-dimensional space, one should use at least 1010 cells. This is unrealistic in practical
applications.

In the suggested algorithm, the conventional approach to the calculation of these integrals is replaced by
the integration based on the random cubature formulae. In this case the expressions for mk;n�1

ab and N k;n�1
ab

are rewritten as:
mk;n�1
ab ¼ V

K0

r2
ab

2

PK0

l¼1

f k;n�1
b1l

jva�vb1lj sin hl

pðwlÞ

N k;n�1
ab ¼ V

K0

r2
ab

2

PK0

l¼1

f 0k;n�1
al f 0k;n�1

b1l
jva�vb1lj sin hl

pðwlÞ

9>>>=
>>>;
; ð12Þ
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where V is the volume of the 5-dimensional space, wl ” wl(vb1l,hl,/l) is the arbitrary chosen point in this
5-dimensional space (three components of velocity of molecules before collisions and directions of their veloc-
ities after collisions), p(wl) is the value of the probability density function of the distribution of these points
and K0 is the total number of these points (assumed number of collisions in a given cell in physical and velocity
spaces). The summation in Eq. (12) is performed over all these points. The dependence of parameters mk;n�1

ab

and N k;n�1
ab in (12) on / enters via f 0k;n�1

al and f 0k;n�1
b1l . Assuming that the choice of wl is random, the relative error

of calculation of mk;n�1
ab and Nk;n�1

ab is proportional to 1=
ffiffiffiffiffiffi
K0

p
and does not depend on the dimension of the space

[17,32]. For practical calculations, we assumed homogeneous distribution of wl, which implies that p(wl) = 1.
This can be justified, keeping in mind the following factors. Firstly, the distribution function of molecules in-
side the Knudsen layer can differ substantially from the equilibrium one and it is not possible to predict its
form before the solution has been found, in the general case. Secondly, when studying the interaction between
molecules it is important to take into account not only their numbers but also their kinetic energies. These two
circumstances would make it very difficult to justify any other choice of p(wl) except p(wl) = 1.

The practical efficiency of the application of Eq. (12) largely depends on the choice of nodes wl. One of the
most widely used approaches for choosing these nodes is based on the so called Korobov sequences [33,34,17].
Using these sequences instead of random numbers makes it possible to reduce errors of computations. In the
case of piecewise constant functions (used in our numerical analysis), the errors of calculations using Korobov
sequences are proportional to 1/K0 (instead of 1=

ffiffiffiffiffiffi
K0

p
when random numbers are used; see above). The con-

dition p(wl) = 1 for these sequences is satisfied. This approach is used in our algorithm.
The explicit expression for V can be presented as:
V ¼ 2p2jvxðmaxÞ � vxðminÞkvyðmaxÞ � vyðminÞkvzðmaxÞ � vzðminÞj. ð13Þ
As mentioned in Section 2, the modelling of the collision processes is based on the assumption that the col-
lisions are elastic (momentum and energy are conserved) and the directions of velocities of molecules in the
coordinate system linked with their centres of inertia are random. The numerical implementation of this
model, however, is linked with a number of difficulties. These are related to the fact that randomly chosen
directions of molecular velocities after collisions are likely to lead to the values of these velocities lying between
the values in the nodes of the discretised velocity space. This eventually can lead to non-conservation of im-
pulses and energies during the collision processes. In the early papers, this problem was resolved by introduc-
ing the correction of the distribution function after the collisions [17]. Although these corrections made the
system conservative, they led to additional sources of errors. In the projection method, developed later in
[20,21,27,29], the actual molecular velocities after collisions were replaced by pairs of velocities referring to
the nearest nodes. These velocities were taken with appropriate weights, which ensured that the conservation
of impulses and energies took place during individual collisions. This, however, led to increase of the complex-
ity of the algorithm.

The approach used in our algorithm is different from the ones described above. It is based on the discret-
isation of the velocities not only during the description of molecular motion but also in the analysis of the
collision processes, shown schematically in Fig. 1. Two colliding molecules enter a certain zone of interaction
with velocities v and v1. We do not know the details of the collision process but we assume that after the
collision these molecules acquire new velocities v 0 and v01 which satisfy the following conditions:

(1) The total impulse and energy of both molecules are conserved (collisions are elastic);
(2) Vectors v 0 and v01 belong to an a priori chosen set of velocities.

The second assumption was not used in the original method developed in [17]. The idea that molecular veloc-
ities after collisions can be chosen among the nodes in the velocity space, similarly to the choice of velocities
before collisions, is not new. For example, a conservative scheme based on a special choice of collision param-
eters was suggested and developed in [35–37]. In this scheme, the velocity vectors of molecules before and after
collisions were taken in the nodes of the originally discretised velocity space. Our approach has some similar-
ities with the approaches used in [35–37] but the details are different. Its practical application can be best
illustrated if we consider the collision process in the frame of reference linked with the centre of inertia of both
molecules and describe the system dynamics in terms of impulses rather than velocities. In this frame of



Fig. 1. Scheme of the collision process between two molecules. v and v1 are velocities of molecules before the collision; v 0 and v01 are their
velocities after the collision. r is the sum of radii of these molecules.
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reference, the impulses of oncoming molecules have equal values but opposite directions. For the two dimen-
sional case, these are schematically shown in Fig. 2a and b. In the case shown in Fig. 2a, pcx = 0 and pcy = Dp,
where the subscript c indicates that the component of the impulse is taken in the frame of reference linked with
the centre of inertia of both molecules, Dp is the grid size in the impulse space (assumed to be the same in all
directions). In the case shown in Fig. 2b, pcx = �Dp and pcy = 2Dp. The collision process leads to the rotation
of impulses of both molecules in such a way that their absolute values remain the same but the directions
opposite. All the possible impulses satisfying these conditions, lie on the circumferences shown in Fig. 2a
and b.

In the general case, it can be shown that all components of impulses in the frame of reference linked with
the centre of inertia of colliding molecules should be integers of 0.5Dp. In the two-dimensional case shown in
Fig. 2a and b, these correspond to the points of intersection of the circumference with the nodes in the impulse
space. In the case shown in Fig. 2a, there are 4 such points corresponding to 4 various combinations of
impulses of molecules after collisions. In the case shown in Fig. 2b, the number of such points increases to
8. This number of intersection points appears to be maximal. The increase of the radius of the circle would
lead to the situation when the circumference approaches very closely to additional nodes on the velocity grid
but these nodes would not lie on the circumference itself (this is the result of our observation, although we
were not able to proove this rigorously). In the three dimensional case, the circumferences shown in
p p′

1p′ 1p

p

1p

p′

1p′

(a) (b) xp

yp

Fig. 2. Scheme of the collision process between two molecules in the frame of reference linked with their centre of inertia. p and p1 are
impulses of molecules before the collision; p 0 and p01 are their impulses after the collision. Subscripts c indicating the centre of inertia are
omitted. All impulses lie in the plane (px,py). The sizes of the grid in this plane are assumed to be the same in px and py directions and equal
to Dp. Both components of all four vectors p, p1, p 0 and p01 are integers of 0.5Dp. The absolute values of these vectors are equal to the radii
of the corresponding circumferences.
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Fig. 2a and b turn into the surfaces of spheres and the maximal number of possible intersection points
increases to 24. This corresponds to the maximal total number of combinations of impulses after collisions
which equals 24. This number of combinations is relatively small. Hence, in the practical implementation
of this model, the calculations of the right hand sides of Eq. (12) were performed for all possible values of
h and / for each collision and then the results were averaged over these variables. This is expected to improve
the accuracy of the results compared with the random choice of h and / from the set of possible values of these
variables.

We believe that this new approach to finding h and / after the collisions provides consistency in
discretisation processes used for the description of molecular dynamics and collision processes. It was tested
on numerous problems, some of which will be discussed in Section 5.

4. Knudsen layer

The numerical solution of the Boltzmann equation, using the model and the numerical algorithm discussed
in Sections 2 and 3, allows us to describe mass and heat transfer processes in binary systems with high level of
accuracy. The practical application of this model and numerical algorithm, however, requires the specification
of boundary conditions. This sometimes leads to additional complications. For example, in the case of mod-
elling of the droplet evaporation process into a sufficiently dense air, the region around the droplet is usually
subdivided into two regions: Knudsen layer and hydrodynamic region (cf. [10]). Heat and mass transfer in the
former are studied based on the kinetic model, while in the latter they are studied based on the hydrodynamic
model. Since the thickness of the Knudsen layer dKn is usually much less than the droplet radius, the curva-
tures of the droplet surface and the outer boundary of the Knudsen layer can be ignored. The scheme of the
processes involved is schematically shown in Fig. 3. Note that the term ‘Knudsen layer’ in our analysis refers
to a two-surface problem.

The boundary conditions at the droplet surface (x = 0) for both fuel vapour and air molecules are assumed
to take the form:
Fig. 3.
drople
and en
Knuds
hydrod
fas;bsðx ¼ 0; vx > 0Þ ¼ nas;bs

1

2pRa;bT s

� �3=2

exp �
v2

x þ v2
y þ v2

z

2Ra;bT s

 !
; ð14Þ
Scheme of mass fluxes of molecules in the Knudsen layer during the evaporation process. jþs is the flux leaving the surface of the
t; j�s is the return flux to the surface of the droplet; jRd ¼ jþRd � j�Rd is the net flux leaving the outer boundary of the Knudsen layer
tering the hydrodynamic region. Ts and TRd are temperatures at the surface of the droplet and at the outer boundary of the
en layer respectively. qs is the fuel vapour density corresponding to Ts, qRd is the fuel vapour density at the inner boundary of the
ynamic region. dKn is the thickness of the Knudsen layer.
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where nas,bs = qas,bs/ma,b are number densities of molecules a and b (fuel vapour and air), Ra,b are the
corresponding gas constants. qas is the density of the saturated vapour corresponding to the droplet surface
temperature Ts. The values of nbs are determined from the equality of incident and reflected fluxes at the drop-
let surface. x-axis is perpendicular to the droplet surface. A more general form of the boundary condition for
the Boltzmann equation at the solid surface was considered in [38].

Not all vapour molecules leaving the droplet surface reach the ambient gas. Some of them eventually form a
return flux j�s as shown in Fig. 3, so that the outward flux at the outer boundary of the Knudsen layer jþRd is
less than jþs . This leads to the situation when the vapour density at this boundary is less than qs. As in the case
of the outward fluxes from the droplet surface, the return fluxes from the outer boundary of the Knudsen layer
are assumed Maxwellian for both types of molecules:
Fig. 4.
0 to 10
the me
faRd;bRdðx ¼ dKn; vx < 0Þ ¼ naRd;bRd

1

2pRa;bT Rd

� �3=2

exp �
v2

x þ v2
y þ v2

z

2Ra;bT Rd

 !
; ð15Þ
where naRd,bRd are mass densities of fuel vapour and air molecules at the inner boundary of the hydrodynamic
region, TRd is the temperature at the outer boundary of the Knudsen layer. The value of TRd is assumed to be
equal to the corresponding value at the inner boundary of the hydrodynamic region.

In most practical applications, TRd is close to Ts, and it is assumed that TRd = Ts. Matching of
jRd ¼ jþRd � j�Rd and the diffusion flux in the hydrodynamic region jdiff leads to the additional boundary con-
dition at the outer boundary of the Knudsen layer (cf. the corresponding matching conditions used in [10]).

One of the main obstacles in practical implementation of this approach to kinetic modelling of droplet
evaporation into numerical codes, lies in the uncertainty of the value of the thickness of the Knudsen layer
dKn. If this thickness is assumed too large, then CPU requirements would be too large for practical applica-
tions. If this thickness is assumed too small, then the outward mass flux at the outward boundary of the Knud-
sen layer could have been grossly overestimated. To illustrate the nature of the problem, let us consider a
specific example of evaporation of n-dodecane (C12H26) droplet, which can be a good approximation of a die-
sel fuel droplet. We took Ts = 600 K, qs(Ts) = 22.09 kg/m3 (this is determined by the Clausius Clapeyron
equation for the saturated fuel vapour pressure) and assumed that no air is present in the Knudsen layer.
We took dKn = 50kc, where kc is the mean free path of fuel vapour molecules calculated for the vapour’s
temperature Ts and density qs as specified above. Also, we assumed that qRd = 0.8qs. Using these boundary
conditions and the model with numerical algorithm described in Sections 2 and 3, we calculated the plots
of q/qs versus x/kc, where q = q(x) is the density of fuel vapour in the Knudsen layer and x is the distance
from the droplet surface. The results are shown in Fig. 4 for x/kc in the range from 0 to 10.

As follows from Fig. 4, the values of q/qs remain practically the same at x > 5kc. This means that we would
be able to obtain the same result if the thickness of the Knudsen layer is decreased by a factor of 10. In this
case, the choice of the value of dKn turns out to be a relatively simple task. Note that the fuel vapour density
jump is observed both at the droplet surface and at the outer boundary of the Knudsen layer. This is a typical
result following from the kinetic modelling of the phenomena (cf. [39]). The results shown in Fig. 4 are not
self-consistent, as the value of qRd (following from the condition of matching fluxes at the outer boundary
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of the Knudsen layer and the hydrodynamic region) cannot be imposed externally. Hence, the iterations would
be required to establish the true value of qRd.

The situation becomes rather different when the presence of air in the Knudsen layer is taken into
account. The plots of q/qs versus x/kc for the same boundary conditions for vapour as in Fig. 4 are
shown in Fig. 5. The partial pressure of air is equal to 2 and 30 bar and various dKn/kc (indicated near
the plots) were used. As can be seen from this figure, the presence of air leads to a number of important
effects. The reductions of the density jumps at the droplet surface and at the outer boundary of the
Knudsen layer are the expected ones (cf. [39]). A more interesting result is the dependence of q/qs on
the chosen values of dKn for both partial pressures of air. No saturation effect demonstrated in Fig. 4
can be seen in this case. From the point of view of the underlying physics, this can be related to the fact
that additional collisions lead to a more homogeneous drop of fuel vapour density across the Knudsen
layer. From the point of view of practical applications, this leads to the problem of correct choice of
dKn. A possible approach to this problem would be to take the largest possible value of dKn. However,
there would be no guarantee that this would allow us to reach the saturation level. Also, the increase
of this thickness 10 times would lead to increase of the required CPU time by a factor of 100, which
would make this approach not practical.

We suggest an alternative approach to this problem focused on the direct finding of vapour density at the
inner boundary of the hydrodynamic region (qRd), rather than estimation of the thickness of the Knudsen
layer. This approach is based on the observation that the actual flux of vapour leaving the droplet can be
found from the relation:
Fig. 5.
dKn/kc
js ¼ jþs � j�s ; ð16Þ

where jþs is the flux in the x direction which is determined by Ts and qs(Ts), j�s is the flux in the �x direction.
The latter is formed due to the fact that molecules of vapour emitted from the surface of the droplet collide
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between themselves and other molecules and part of them return to the droplet. The value of j�s is not directly
related to Ts and qs. It is found from the direct numerical solution of the Boltzmann equation for the vapour.

The net mass flux of the vapour at an arbitrary distance from the droplet surface within the Knudsen layer
can be found from the relation:
Fig. 6.
The pa
j ¼ jþ � j�. ð17Þ

Both j+ and j� decrease with increasing distance from the droplet surface (x) but the value of j remains equal
to js due to the conservation of mass. A decrease of j due to the curvature of the droplet surface is taken into
account in due course.

The plots of j+ and j� for vapour versus x/kc for the same values of parameters as in Fig. 5 and pair = 2 bar
are shown in Fig. 6a. As follows from this figure, both j+ and j� decrease with increasing x/kc but the difference
between them (j: net flux) remains the same as expected. The same plots as in Fig. 6a but for air are shown in
Fig. 6b. As follows from the latter figure, both j+ and j� for air increase with increasing x/kc but the difference
between them remains close to zero. This reflects the fact that there is no net flux of air towards droplets in
steady state conditions. A small difference between j+ and j� for air (about 1%) reflects a small error in com-
putations. There is no underlying physics behind this difference.

When the Knudsen layer is thin enough, then the number of collisions in it is expected to be small and the
mass flux of reflected molecules (j�s ) is close to zero. Hence, j � js � jþs . The increase of dKn leads to the
increase of j�s and the corresponding decrease of js. However, at large distances from the droplet surface
the effects of collisions on the returning flux diminishes and j�s reaches its saturation level. In this case, the
constant flux of vapour j � js � jRd is established.

Also, inspection of Fig. 5 shows us that the value of dKn affects the distribution of vapour density inside the
Knudsen layer. Let q1 and q2 be vapour densities near the droplet surface and near the outer boundary of the
Knudsen layer. As mentioned earlier, q1 < qs, q2 > qRd and q1 > q2. The latter inequality results from
molecular collisions. In the absence of such collisions (free molecular flow) q1 = q2. In this case the values
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of qs � q1 and q2 � qRd would reach their maximum values. In the case of large number of collisions, gas
behaves similarly to continuous medium where q1 is close to qs, q2 is close to qRd and the gradient of q inside
the Knudsen layer reaches its maximal value.

We would expect that Dq ” q1 � q2 depends on the number of collisions experienced by a molecule of
vapour inside the Knudsen layer N = dKn/kc and varies between 0 and qs � qRd when N increases from 0
to 1.

Plots of j and Dq versus N for the same values of parameters as in Fig. 5a are shown in Fig. 7a and b. The
observation of these figures shows that they are almost symmetric. This allows us to present the expressions
for j and Dq as:
j ¼ AF ðNÞ þ B

Dq ¼ CF ðNÞ þ D

�
; ð18Þ
where A,B,C,D are constants, F(N) is an unknown function of N. In this case, j is a linear function of Dq:
j ¼ �aDqþ b; ð19Þ

where a, b are new constants depending on Ts and the partial pressure of air. The negative value of the coef-
ficient before Dq reflects the fact that j decreases when Dq increases.

The predictions of Eq. (19) have been checked against the results of numerical solutions of the Boltzmann
equations for air partial pressures in the range from 2 atm to 50 atm, Ts = 600 K, qRd = 0.8qs and
qs(Ts) = 22.09 kg/m3 (assuming that the vapour is that of n-dodecane). The results are shown in Fig. 8.
The points connected by solid lines correspond to various values of dKn in the range between 5kc and
100kc (dKn/kc = 10,50,100 for pair = 2 bar; dKn/kc = 10,20,50 for pair = 10 bar and pair = 25 bar; dKn/kc = 5,
10, 20 for pair = 50 bar). The dotted lines are extrapolations of the solid ones. The limiting point for all these
lines refers to Dqmax = 4.42 kg/m3. This figure clearly confirms the validity of Eq. (19). The practical applica-
tion of this figure, however, is limited as all plots on it refer to qRd = 0.8qs.

In the plots shown in Fig. 9, we restricted our analysis to just one value of pair = 30 bar but considered a set
of values of qRd in the range form 0.6qs to 0.8qs. As can be seen from this figure, j is clearly a linear function of
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Dq in agreement with Eq. (19). The same results were obtained for other values of Ts in the range from 400 K
to 659 K (critical temperature of n-dodecane).

The plots shown in Figs. 8 or 9 are extrapolated towards higher Dq and their intersections with the vertical
lines corresponding to Dq = Dqmax are found. This is expected to give a true value of jRd for the chosen value
of qRd, since Dq cannot exceed Dqmax. Explicit expression for j can be obtained from Eq. (19) by replacing Dq
by Dqmax = qs � qRd in it:
jRd ¼ �aðqs � qRdÞ þ bðqRdÞ; ð20Þ

where we explicitely indicated that b is a function of qRd. Note that in the limiting case when qRd = qs the net
flux jRd in expected to be zero. Hence, bjqRd¼qs

¼ 0. In the general case from our computations (see Fig. 9), it
follows that b is proportional to qs � qRd, i.e. b = c(qs � qRd), where c is the new constant. This allows us to
rewrite Eq. (20) as:
jRd ¼ �a1ðqs � qRdÞ; ð21Þ

where a1 = a � c. Eq. (21) indicates that jRd is the linear function of qRd.
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Using Eq. (21) or the set of lines shown in Fig. 9, we obtained jRd(Dqmax) and presented the plot of jRd(qRd/qs)
(this is the true vapour flux as predicted by the kinetic model). Also, we obtained the corresponding plot
jdiff(qRd/qs) as predicted by the conventional diffusion theory applicable in the hydrodynamic regime [14]:
jdiff ¼
qmixDc

Rd

lnð1þ BMÞ; ð22Þ
where BM is the Spalding mass number defined as:
BM ¼
Y fRd

1� Y fRd

; ð23Þ
YfRd = qRd/qmix, qmix is the density of the mixture of vapour and air, Dc is the diffusion coefficient of vapour in
air. When deriving Eq. (22) we ignored the difference of areas of the droplet surface and the outer boundary of
the Knudsen layer.

The plots of jRd versus qRd/qs and jdiff versus qRd/qs for the same values of parameters as in Fig. 9 are shown
in Fig. 10. The intersection between these two curves gives the true values of qRd and j = jRd = jdiff. It follows
from Fig. 10, that these values are: j = 0.81 kg/(m2s) and qRd = 0.88qs.

5. Applications

5.1. Relaxation of the non-equilibrium distribution function

Let us consider a spatially homogeneous air at atmospheric pressure and average temperature 300 K. Its
distribution function is approximated by the sum of two shifted Maxwellian distributions:
f ¼ n1

2pRairT 1

� �3=2

exp �
ðvx � v01Þ2 þ v2

y þ v2
z

2RairT 1

 !
þ n2

2pRairT 2

� �3=2

exp �
ðvx þ v02Þ2 þ v2

y þ v2
z

2RairT 2

 !
; ð24Þ
where n1/n2 = 2, T2/T1 = 0.75.
The plot of f versus vx and vy, as predicted by Eq. (24), is shown in Fig. 11a. Our task is to calculate the time

evolution of this distribution function. Since the distribution is assumed to be initially spatially homogeneous,
it will remain spatially homogeneous at any other t > 0. In this case, there is no need to consider the displace-
ment of molecules in the physical space and the attention can be concentrated on the changes of f due to col-
lision processes. Our calculations predict gradual smoothening of f (see Fig. 11b and c) and its final evolution
into the Maxwellian distribution (Fig. 11d). The average temperature and the total number of molecules
remain the same during this evolution. The time interval between the distributions shown in Fig. 11a and d
is about 0.005 ls. This result is consistent with the qualitative analysis of this process and can be considered
as a reliable functionality test for the new algorithm.



Fig. 11. The plots of f versus (vx,vy) as predicted by Eq. (24) (a) and the evolution of f with time during the first 0.005 ls (b–d). The
average temperature is assumed equal to 300 K and the pressure is assumed equal to 1 bar. Spatial homogeneity of gas is assumed.
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5.2. Evaporation and condensation in the presence of inert gas

The next problem to be considered is identical to the one studied in [23]. This problem focuses on the anal-
ysis of the mixture of vapour with molecular concentration nA and inert gas with molecular concentration nB

confined between two infinite plates located at x = 0 and x = L as shown in Fig. 12. The temperature at the
surface of the first plate is assumed to be equal to TI. The concentration of evaporating molecules nI at this
plate is determined by the saturation condition at T = TI, while molecular concentration at the second bound-
ary is maintained equal to nII = 2 nI. The temperature at the surface of the second plate is equal to that at the
first: TI = TII. The initial concentrations of the vapour and inert gas are assumed to be homogeneous and
equal to nI and 0.5nI respectively in the whole domain. The results obtained for the steady state conditions
practically do not depend on the choice of the initial distribution of vapour. The average concentration of
the inert gas is assumed to be conserved. We assumed that the diameters and masses of all molecules are
Fig. 12. Boundary and initial conditions for the evaporation and condensation problem discussed in Section 5.2.



Fig. 13. Plots of nA/nI versus x/L and nB/nI versus x/L as obtained in [23] for Kn = 0.1 (triangles) and Kn = 0.01 (circles). The same plots
obtained using the model and numerical algorithm described in Sections 2–4 (solid curves).
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the same and equal to those of N2, although the results would not change for other values of these parameters
provided that they are the same for vapour and inert gas (see [23]). The initial distribution functions of both
vapour and inert gas are assumed to be Maxwellian.

The authors of [23] studied the time evolution of the system described above using the standard direct sim-
ulation Monte-Carlo (DSMC) method by Bird [15,16]. They demonstrated that this system asymptotically
approaches to the steady state spatial distribution of concentrations of vapour nA(x) and the inert gas
nB(x). These steady state distributions depend on the values of Kn = kc/L, where the value of the mean free
path kc for vapour is taken for T = TI and n = nI. Results of their calculations for nA(x)/nI and nB(x)/nI,
for Kn = 0.1 and Kn = 0.01 are shown in Fig. 13. Triangles refer to Kn = 0.1, while circles refer to
Kn = 0.01. The results of calculations using the model and numerical algorithm described in Sections 2–4
and the same values of parameters as in [23] are shown in the same figure by solid curves. Exceptionally good
agreement between the results reported in [23] and those obtained using our algorithm can support the validity
of the results obtained by two different algorithms. Note that the agreement between these results was first
reported in [28], where the results were presented in a slightly different format.

5.3. Evaporation of a diesel fuel droplet

In this section a realistic problem of evaporation of a diesel fuel droplet into air at total pressure 30 bar is
considered. The calculations were performed using the model and numerical algorithm described above and
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the hydrodynamic model (see Eq. (22) with qRd = qs). The contribution of air in the Knudsen layer is taken
into account. Plots of ~R ¼ Rd=Rd0 and ~T ¼ T s=T cr ¼ T s=659 versus time for Rd0 = 5 lm, Ts0 = 300 K and
ambient air temperature Tair = 650 K are shown in Fig. 14. As follows from this figure, the hydrodynamic
model always overpredicts the value of droplet surface temperature and underpredicts the values of droplet
radii and the evaporation times as expected. For example, the evaporation time is underpredicted by the
hydrodynamic model by about 7%. A similar analysis was performed for Rd0 = 20 lm, and for both Rd0

for Tair = 750 K and Tair = 1000 K. The qualitative trends of all the curves turned out to be the same as shown
in Fig. 14. The underprediction of the evaporation time by the hydrodynamic model for other values of the
input parameters varied between about 1% and 4%. This result is consistent with the conclusion made in [14]
based on the approximate solution of the Boltzmann equation.

Note that the predictions of the kinetic model, described in this paper, would almost coincide with those of
the hydrodynamic model if the contribution of air in the Knudsen layer has not been taken into account.
Hence, taking into account the presence of air is essential for correct quantitative analysis of fuel droplet heat-
ing and evaporation.

6. Conclusions

A numerical algorithm for kinetic modelling of droplet evaporation processes is suggested. This algorithm
is focused on the direct numerical solution of the Boltzmann equations for two gas components: vapour and
air. The collisions between vapour molecules, air molecules, and air and vapour molecules are taken into
account. This numerical algorithm is essentially based on the scheme suggested by Aristov and Tcheremissine
[17]. Following this scheme, the physical and velocity spaces are discretised, as in the conventional structured
computational fluid dynamics (CFD) codes and the Boltzmann equations are presented in discretised forms.
The solution of these discretised equations is performed in two steps. Firstly, molecular displacements are cal-
culated ignoring the effects of collisions. Secondly, the collisional relaxation is calculated under the assumption
of spatial homogeneity. The numerical solution of the discretised equations at the first step is performed fol-
lowing the explicit approach. At the second step, the conventional approach to calculating collision integrals is
replaced by the integration based on the random cubature formulae. The distribution of molecular velocities
after collisions is found based on the assumption that the total impulse and energy of colliding molecules are
conserved. The directions of molecular impulses after the collisions are random but their components belong
to an a priori chosen set.

A new method of finding the matching conditions for vapour mass fluxes at the outer boundary of the
Knudsen layer of evaporating droplets and at the inner boundary of the hydrodynamic region is suggested.
This method is based on the observation that the net mass flux of evaporating molecules j is proportional
to the difference in fuel vapour densities near the surface of droplets and the outer boundary of the Knudsen
layer (Dq). Thus, instead of calculating the value of the mass flux for an actual thickness of the Knudsen layer
(which is not known), these fluxes are calculated taking this thickness smaller that the actual one. Then the
plots of j versus Dq are extrapolated to Dqmax, where Dqmax = qs � qRd is the maximal possible value of
Dq. The value of qRd is found via matching j and the corresponding diffusion flux in the hydrodynamic region.

The numerical algorithm described above is applied to the analysis of three problems. The first problem is
the relaxation of initially non-equilibrium distribution function of air molecules towards the Maxwellian one,
assuming that there are no spatial gradients in the system. This is essentially a functionality test of the algo-
rithm. The second problem is identical to the one studied in [23]. This problem focuses on the analysis of the
mixture of vapour and inert gas confined between two infinite plates. Masses and diameters of vapour and
inert gas molecules are assumed to be the same. Results of calculations reported in [23] for Kn = 0.1 and
Kn = 0.01 are compared with the results of calculations using the numerical algorithm described above and
the same values of parameters as in [23]. Exceptionally good agreement between the results reported in [23]
and those obtained using our algorithm can support the validity of both results and the correctness of both
algorithms. The third problem focuses on the modelling of evaporation of diesel fuel droplets into a high pres-
sure air. This problem is similar to the one considered in [14] using an approximate solution of the Boltzmann
equation. Using the values of parameters typical for diesel engines (total pressure 30 bar; ambient air temper-
ature 650 K) and taking into account the contribution of air in the Knudsen layer, it was shown that the
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kinetic effects predicted by our numerical algorithm are noticeable and need to be taken into account in the
analysis of droplet heating and evaporation processes. This conclusion agrees with the one reported in [14]
based on the approximate solution of the Boltzmann equation without taking into account the contribution
of air in the Knudsen layer.
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